If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+x^2=320
We move all terms to the left:
4x^2+x^2-(320)=0
We add all the numbers together, and all the variables
5x^2-320=0
a = 5; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·5·(-320)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*5}=\frac{-80}{10} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*5}=\frac{80}{10} =8 $
| 4/5x+3/4x+1/2=10 | | 26/15=10470-w | | 7p+2p=9p | | 14.7+.445x=32.5 | | 12-5(x+3)=6x-5 | | -3v+1=9-4v | | 30x-8=22 | | 4x-3(-3x+4)=14 | | 2y=5+y | | 8z-12z=12 | | 27t^2-6t-1=0 | | 305x=185x+31,080 | | 2(8-x)=3(-7+2x)+2 | | 22=-2a | | 14.7+.445x=32.5x | | -8(3x+2)+5x=41 | | 5v+16=-13v-20 | | B^2+9b+9B=0 | | 3x-3=8x+3 | | 2x+25+4x+5=180 | | 3=17/11q | | F(x)=(1+3x)/(5-4x) | | 1/6x=(3x+5)/4+1/3(x-1) | | 2(y+10)=80 | | 7-49t=15+7.6t | | R=3.14c | | x-11.203=7.4 | | 4r+4=1+r-4-8 | | 5v+16=-13-20 | | (3k+5)^2=8 | | 10+r/6=0 | | -16-8v=8(4v+3) |